Space-based passive microwave soil moisture retrievals and the correction for a dynamic open water fraction
نویسنده
چکیده
The large observation footprint of low-frequency satellite microwave emissions complicates the interpretation of near-surface soil moisture retrievals. While the effect of sub-footprint lateral heterogeneity is relatively limited under unsaturated conditions, open water bodies (if not accounted for) cause a strong positive bias in the satellite-derived soil moisture retrieval. This bias is generally assumed static and associated with large, continental lakes and coastal areas. Temporal changes in the extent of smaller water bodies as small as a few percent of the sensor footprint size, however, can cause significant and dynamic biases. We analysed the influence of such small open water bodies on near-surface soil moisture products derived from actual (non-synthetic) data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) for three areas in Oklahoma, USA. Differences between on-ground observations, model estimates and AMSR-E retrievals were related to dynamic estimates of open water fraction, one retrieved from a global daily record based on higher frequency AMSRE data, a second derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and a third through inversion of the radiative transfer model, used to retrieve soil moisture. The comparison demonstrates the presence of relatively small areas (<0.05) of open water in or near the sensor footprint, possibly in combination with increased, belowcritical vegetation density conditions (optical density <0.8), which contribute to seasonally varying biases in excess of 0.2 (m3 m−3) soil water content. These errors need to be addressed, either through elimination or accurate characterisation, if the soil moisture retrievals are to be used effectively in a data assimilation scheme.
منابع مشابه
Effects of corn on c- and l-band radar backscatter: a correction method for soil moisture retrieval
Past research has demonstrated the potential of mapping soil moisture using both low frequency passive and active microwave measurements (e.g. Jackson et al., 1999; Wagner & Scipal, 2000). This resulted in formulating satellite missions carrying L-band microwave sensors capable of monitoring soil moisture globally. For example, a microwave radiometer has recently been launched by European Space...
متن کاملThe effects of scene heterogeneity on soil moisture retrieval from passive microwave data
The Tau-Omega model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moistur...
متن کاملMAPSM: A Spatio-Temporal Algorithm for Merging Soil Moisture from Active and Passive Microwave Remote Sensing
Availability of soil moisture observations at a high spatial and temporal resolution is a prerequisite for various hydrological, agricultural and meteorological applications. In the current study, a novel algorithm for merging soil moisture from active microwave (SAR) and passive microwave is presented. The MAPSM algorithm—Merge Active and Passive microwave Soil Moisture—uses a spatio-temporal ...
متن کاملAnalysis of a Least-Squares Soil Moisture Retrieval Algorithm from L-band Passive Observations
The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency (ESA), launched on November 2009, is an unprecedented initiative to globally monitor surface soil moisture using a novel 2-D L-band interferometric radiometer concept. Airborne campaigns and ground-based field experiments have proven that radiometers operating at L-band are highly sensitive to soil moisture, due to...
متن کاملThe added value of spaceborne passive microwave soil moisture retrievals for forecasting rainfall-runoff partitioning
[1] Using existing data sets of spaceborne soil moisture retrievals, streamflow and precipitation for 26 basins in the United States Southern Great Plains, a 5-year analysis is performed to quantify the value of soil moisture retrievals derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) X-band (10.7 GHz) radiometer for forecasting storm event-scale runoff ratios....
متن کامل